Classe de 2nde Devoir sur table n°1 - Mélanges et corps pur

Restitution de connaissances

- a. Rappeler la définition de la masse volumique
- b. Donner, en précisant toutes les unités, la relation permettant de calculer la masse volumique
- c. Que signifie homogène?
- d. Quel est le contraire de mélange en chimie ?
- e. Quelle la valeur de la masse volumique de l'eau pure ?

Exercice 1:

On utilise de l'éthanol pur de densité d = 0,789.

1. Quelle est la masse volumique de l'éthanol en g/mL puis en g / L.

$$\rho = 0.789 \text{ g/mL soit } 789 \text{ g/L}$$

- 2. Quelle est la masse d'éthanol dans un bidon (neuf) de contenance 1 litre ?

 Ce bidon contient 789 g d'éthanol.
- 3. Quel est le volume, en mL, d'un échantillon de 150g d'éthanol.

$$V_{\text{\'ethanol}} = \frac{m_{\text{\'ethanol}}}{\rho} = \frac{150 \text{ g}}{0.789} = 190 \text{ mL}$$

Exercice 2:

On introduit dans une éprouvette graduée 5,0 mL d'eau et 15,0 mL d'éther. On mélange, sachant que ces deux liquides ne sont pas miscibles, puis on laisse décanter.

1. Dans quel état physique ces deux espèces chimiques se trouvent-elles à la température ambiante (20 °C) ? Justifier la réponse.

D'après les valeurs du tableau ci-dessous, ce sont des substances à l'état liquide. (par ailleurs, c'est écrit juste au dessus)

2. Déterminer les masses d'eau et d'éther introduites dans l'éprouvette.

$$masse_{eau} = V_{eau} \times \rho_{eau} = 5.0 \text{ mL} \times 1.0 \frac{g}{mL} = 5.0 \text{ g}$$

$$masse_{ether} = V_{ether} \times \rho_{ether} = 15,0 \text{ mL} \times 0,71 \frac{g}{mL} = 10,65 \text{ g}$$

- **3.** Faire un schéma légendé de l'éprouvette graduée en indiquant la position et la composition des phases.
- 4. Calculer le pourcentage massique de ces espèces dans le mélange.

Masse totale du mélange : 15,65g

%eau =
$$\frac{masse_{eau}}{masse_{totale}} \times 100 = \frac{5,0}{15,65} \times 100 = 31,9\%$$

$$\% ether = \frac{masse_{ether}}{masse_{totale}} \times 100 = \frac{10,65}{15,65} \times 100 = 68,1\%$$

Exercice 3:

- 1. Écrire le protocole de l'expérience réalisée.
- Peser sur une balance la masse des 20 billes
- Verser exactement 10mL d'eau dans une éprouvette graduée
- Introduire délicatement les 20 billes
- Mesurer le volume final dans l'éprouvette
- 2. Déterminer ensuite les valeurs de la masse d'une bille et du volume d'une bille.

Masse d'une bille

$$m_{bille} = \frac{m_{20\text{billes}}}{20} = \frac{78 \text{ g}}{20} = 3.9 \text{ g}$$

Volume d'une bille

$$V_{bille} = \frac{(V_{final} - V_{initial})}{20} = \frac{(21.8 - 10)}{20} = 0.59 \, mL$$

3. En mettant en œuvre une démarche de résolution, ces billes sont-elles en acier ?

Calcul de la masse volumique de l'acier :

$$\rho = \frac{m_{bille}}{V_{bille}} = \frac{3.9 \text{ g}}{0.59 \text{ mL}} = 6.61 \text{ g/mL}$$

Conversion dans la bonne unité :

$$\rho = 6.61 \frac{g}{mL} \times (\frac{1 \, kg}{1000g}) \times (\frac{1000000 \text{mL}}{1 \text{m}^3}) = 6610 \, kg \, / m^3$$

Conclusion:

La valeur calculée pour la masse volumique n'entre pas dans l'intervalle donné entre entre 7500 et 8100 kg/m³.

Les billes ne sont donc pas en acier.